\geq
۵
7
\Box
a
č
_
N
0
Q
£
Ξ
Ξ
0
3
≥
(
۶
\sim
• • •
٥
Ħ
_
_

STUDY MODULE DI	ESCRIPTION FORM			
		ode 011105251010403578		
Find of study	Profile of study (general academic, practical)	Year /Semester		
Engineering Management - Part-time studies -	` '	3/5		
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) elective		
Cycle of study:	Form of study (full-time,part-time)			
First-cycle studies	part-time			
No. of hours		No. of credits		
Lecture: 10 Classes: - Laboratory: -	Project/seminars:	- 2		
Status of the course in the study program (Basic, major, other) (university-wide, from another field)				
(brak) (brak)				
Education areas and fields of science and art		ECTS distribution (number and %)		
technical sciences		2 100%		
Technical sciences		2 100%		
Pasponsible for subject / lecturer				

prof dr hab Danuta Wróbel email: danuta.wrobel@put.poznan.pl tel. (+48 61) 665-31-79 Faculty of Technical Phisics ul. Nieszawska 13A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge on physics and mathematics				
2	Skills	Ability to solve simple problems from the area of physics and mathematics, ability to collect information from suggested sources				
3	Social competencies	Understanding and necessity of expanding own competences from the range of modern science and technology in order to have the ability to work in a team; understanding the necessity of cooperation with other students; understanding of the necessity of taking decisions in favor of the academic society and society as a whole.				

Assumptions and objectives of the course:

- 1. Presentation of the knowledge from the range of basics of modern quantum physics and the correlation between physics and managerial skills
- 2. Presentation of the knowledge on the importance of modern physics in the development of the society
- 3. Giving knowledge on fundamental quantum phenomena and presentation during lectures
- 4. Interactive lectures realized in cooperation with students and forming the skill of teamwork

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. knows basic methods, techniques, instruments and materials applied for solving simple engineer tasks from the range of machine construction and implementation - [K04-InzA_W02]
- 2. knows typical industrial technologies and deeply knows technologies of machine construction and implementation [K07-InzA_W5]

Skills:

- 1. is able to identify project tasks and solve simple project tasks from the range of machine construction and implementation - [K01-InzA_U6]
- 2. is able to apply typical methods of solving simple tasks from the range of machine construction and implementation [K01-InzA_U7]

Social competencies:

1. is aware of the importance of physics and it consequences in the engineer activity - [K01-InzA_K1]

Faculty of Engineering Management

Assessment methods of study outcomes

Forming assessment:

- a) laboratories: on basis of the current progress in realization of topics evaluated on basis of written reports
- b) lectures: on basis of responses to questions concerning subjects from former lectures,

Final assessment:

- a) laboratories: on basis of the average of fragmentary evaluations formulating evaluations
- b) lectures: final assessment in written form of a test. Entering the test is possible after passing the final assessment of laboratory classes

Course description

Wave - corpuscular duality. De Broglie's hypothesis. Photoelectric phenomenon. Compton's phenomenon. Creation of pairs. Rutherford's experiment. Model of hydrogen atom. Ideal black body radiation. Schroedinger's equation. Wave functions. Quantum -mechanical oscillator. Tunnelling. EPR paradox. Hidden variable hypothesis. Quantum - based teleportation

Lecture - informative and conversational lecture

Laboratory - laboratory method

Basic bibliography:

- 1. Wykład z fizyki cz. 2 Elementy fizyki współczesnej, Sylwester Kania , Wydawnictwo Politechniki Łódzkiej, 2012
- 2. Wprowadzenie do mechaniki kwantowej i fizyki statystycznej, Robert Kosiński, Oficyna Wydawnicza Politechniki Warszawskiej, 2013
- 3. Wykłady z fizyki t.3 Optyka kwantowa. Fizyka atomu. Fizyka ciała stałego. Fizyka jądra atomowego i cząstek elementarnych, I.W. Sawieliew, PWN 2002

Additional bibliography:

1. Podstawy fizyki relatywistycznej i mechaniki kwantowej, Marian Kozielski, Oficyna Wydawnicza Politechniki Warszawaskiej, 1999

Result of average student's workload

Activity	Time (working hours)
1. lecture	10
2. consultation	5
3. final assessment and exam	10
4. preparing to exam	30

Student's workload

Source of workload	hours	ECTS
Total workload	55	2
Contact hours	25	1
Practical activities	5	0